Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus.

نویسندگان

  • Lily Y Koo
  • Darrell J Irvine
  • Anne M Mayes
  • Douglas A Lauffenburger
  • Linda G Griffith
چکیده

Integrin-mediated cell adhesion is central to cell survival, differentiation and motility. Many cell responses induced by integrins require both receptor occupancy and receptor aggregation, and appear to be regulated by both biochemical and biophysical means. Multidomain extracellular matrix molecules may serve to foster integrin aggregation by presenting local clusters of adhesion ligands, a hypothesis supported by studies with synthetic substrates showing that cell adhesion and migration are enhanced when adhesion ligands are presented in nanoscale clusters. Here, we used a novel synthetic polymer system to present the adhesion ligand GRGDSPK in nanoscale clusters with 1.7, 3.6 or 5.4 peptides per cluster against a non-adhesive background, where the peptide is mobile on a 2 nm polyethylene oxide tether. Average ligand density ranged from 190 to 5270 RGD/microm(2). We used these substrates to study the effects of ligand density and clustering on adhesion of wild-type NR6 fibroblasts, which express alphavbeta3 and alpha5beta1, integrins known to bind to linear RGD peptides. The strength of cell-substratum adhesion was quantified using a centrifugal detachment assay to assess the relative number of cells remaining adherent after a 10 minute application of defined distraction force. An unusual relationship between cell detachment and distraction force at relatively low values of applied force was found on substrates presenting the clustered ligand. Although a monotonic decrease in the number of cells remaining attached would be expected with increasing force on all substrates, we instead observed a peak (adhesion reinforcement) in this profile for certain ligand conditions. On substrates presenting clustered ligands, the fraction of cells remaining attached increased as the distraction force was increased to between 70 and 150 pN/cell, then decreased for higher forces. This phenomenon was only observed on substrates presenting higher ligand cluster sizes (n=3.6 or n=5.4) and was more pronounced at higher ligand densities. Adhesion reinforcement was not observed on fibronectin-coated surfaces. These results support previous studies showing that biophysical cues such as ligand spatial arrangement and extracellular matrix rigidity are central to the governance of cell responses to the external environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...

متن کامل

Differentiation stage alters matrix control of stem cells.

Cues from the material to which a cell is adherent (e.g., adhesion ligand presentation, substrate elastic modulus) clearly influence the phenotype of differentiated cells. However, it is currently unclear if stem cells respond similarly to these cues. This study examined how the overall density and nanoscale organization of a model cell adhesion ligand (arginine-glycine-aspartic acid [RGD] cont...

متن کامل

O 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions

KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...

متن کامل

Biochemical functionalization of polymeric cell substrata can alter mechanical compliance.

Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local...

متن کامل

Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery

Spatial control over the distribution and the aggregation of arginine-glycine-aspartate (RGD) peptides at the nanoscale significantly affects cell responses. For example, nanoscale clustering of RGD peptides can induce integrins to cluster, thus triggering complete cell signaling. Dendrimers have a unique, highly branched, nearly spherical and symmetrical structure with low polydispersity, nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2002